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1 The Binomial Model

• Assume that we know that the stock price follows a geometric process
with constant proportionate up and down movements, u and d:
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where q is the probability of an up move.
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• A contingent claim (for example a call or a put option) has a price g(S)
which follows the process:

g(S)

q

q

�
�

�

@
@

@

g(Su)

g(Sd)

�
�

�

@
@

@

@
@

@

�
�

�

g(Su2)....

g(Sud)....

g(Sd2)....

g(Sun)

g(Sun−1d)

�
�

�

@
@

@

@
@

@

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

• Define the hedge ratio:

δ1 =
g(Su)− g(Sd)

Su− Sd

Lemma 1 The portfolio of δ1 stocks and 1 short contingent claim has a
riskless payoff at t = 1 equal to

g(Su)d− g(Sd)u

u− d
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Proposition 1.1 Suppose the price of a stock and a contingent claim follow
the processes above, then the no-arbitrage price of the contingent claim is

g(S) =
[pg(Su) + (1 − p)g(Sd)]

R

where

p =
R− d

u− d

and R is 1+ risk-free rate.

Corollary 1 Suppose the price of a stock and a contingent claim follow the
processes above, then the no-arbitrage price of the contingent claim is

g(S) =
[png(Sun) + pn−1(1 − p)g(Sun−1d)n+ ....+ pn−r(1 − p)rg(Sun−rdr) n!

r!(n−r)!
+ ...]

Rn

where
n! = n(n− 1)(n− 2)...(2)(1),

n!

r!(n− r)!

is the number of paths leading to node r, and

r is the number of down moves of the process.

Example 1: A Call Option

A call option with maturity T and strike price K has a payoff max[ST −K, 0]
at time T .

Rng(St) =
[pn(Stu

n −K) + pn−1(1 − p)n(Stu
n−1d−K) + ....+ pn−r(1 − p)r(Stu

n−rdr −K) n!
r!(n−r)!

Rn

Rng(St)

St

= pnun + pn−1(1 − p)un−1dn+ .... + pn−r(1 − p)run−rdr n!

r!(n− r)!

− k

[
pn + pn−1(1 − p)n+ .... + pn−r(1 − p)r n!

r!(n− r)!

]
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Rng(St)

St
=

r∑

i=0

pn−i(1 − p)iun−idi n!

i!(n− i)!

− k
r∑

i=0

pn−i(1 − p)i n!

i!(n− i)!

The Black-Scholes Formula

Define Bt,T = 1
Rn and

P (i) = pn−i(1 − p)i n!

i!(n− i)!

ST,i = Stu
n−idi

Then

g(St) = Bt,T

[
r∑

i=0

ST,iP (i) −K
r∑

i=0

P (i)

]

and in the limit as n→ ∞, we have

g(St) = Bt,T

∫ ∞

K
STf(ST )dST −KBt,T

∫ ∞

K
f(ST )dST

where f(ST ) is the distribution of ST under the risk-neutral probabilities, P .
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Proof of Proposition 1.1

From lemma 1 the payoff on the hedge portfolio of δ1 stocks and one short
option is

g(Su)d− g(Sd)u

u− d

Since the payoff is risk free its value must be

δ1S − g(S) =
g(Su)d− g(Sd)u

R(u− d)

Hence

g(S) =
g(Su) − g(Sd)

u− d
− g(Su)d− g(Sd)u

R(u− d)

=
Rg(Su) −Rg(Sd) − g(Su)d+ g(Sd)u

R(u− d)

=
1

R

[
g(Su)

(
R− d

u− d

)
− g(Sd)

(
u−R

u− d

)]

=
1

R
[g(Su)p− g(Sd)(1− p)]

where

p =
R− d

u− d

1 − p =
u−R

u− d
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Assume the asset price follows the log-binomial process:
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If xn follows the above process, the logarithm of xn has a mean:

n[q ln(u) + (1 − q) ln(d)] = µ(T − t)

a variance:
n[q(1 − q)(ln(u) − ln(d))2] = σ2(T − t).

Lemma 2 Assume that two lognormally distributed stocks have the same
volatility, σ, and have mean, µj, j = 1, 2. Then the lognormal distributions
can be approximated with log-binomial distributions with (u, d, q1 = 0.5) and
(u, d, q2) for large n.
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Proposition 1.2 Consider two stocks with prices S1 = S2 and volatility σ
and a derivative with exercise priceK. Let the derivative prices be g(S1), g(S2).
Then, regardless of the drifts µ1, µ2

g(S1) = g(S2)

Proof

We consider the hedge ratio for each option in state u at time 1. First we
have

g(S1u
2) = g(S2u

2)

g(S1ud) = g(S2ud)

The hedge ratio for option 1 is

δ1,1,u =
g(S1u

2) − g(S1ud)

S1(u− d)
= δ1,2,u

Now consider a portfolio of two stocks and two options costing

δ1,1,uS1u− g(S1u) − [δ1,2,uS2u− g(S2u)] = −g(S1u) + g(S2u)

This portfolio provides a risk-free return equal to

δ1,1,uS1u
2 − g(S1u

2) − [δ1,2,uS2u
2 − g(S2u

2)] = 0

It follows that
g(S1u) = g(S2u)

By a similar argument
g(S1d) = g(S2d)

and also
g(S1) = g(S2)
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Proposition 1.3 (Corhay and Stapleton) Consider two stocks with the same
volatility σ. Assume that S1,t and S2,T follow the diffusion processes

and

dS1,t

S1,t
= µ1dt+ σdz

dS2,t

S2,t
= µ2dt+ σdz

where µ1 and µ2 are the drift parameters for assets 1 and 2.

Assume that there are two derivatives securities with the same contract spec-
ifications, and exercise prices K1 and K2 such that

K1

S1,0
=

K2

S2,0

i.e. the strike price relative to the stock price at time 0 is the same. Let
the price at time 0 of the derivative on asset 1 be g1(S1,0) and on asset 2 be
g2(S2,0). Then in the absence of arbitrage

g1(S1,0)

S1,0
=
g2(S2,0)

S2,0
.
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2 The Black-Scholes and Black Models

Given the Mean-irrelevance Theorem, an option can be valued by valuing an
equivalent option on a ‘risk-neutral’ stock, with volatility σ. We need the
following:

Lemma 3 The value of a call option on a risk-neutral stock, i.e. a stock,
paying no dividends, that has a price

St = Bt,TE(ST ),

is
Ct = Bt,TE[max(ST −K, 0)].

Hence, if ST is lognormal, a call option on a risk-neutral stock has a value:

Ct = Bt,TF [g(ST )],

where F (.) denotes ‘forward price of’, and

g(ST ) = max(ST −K, 0)

F [g(ST )]

St
= E

[
max

(
ST

St
− k, 0

)]

=
∫ ∞

k

(
ST

St
− k

)
f
(
ST

St

)
d
(
ST

St

)

=
∫ ∞

ln(k)
(ez − k) f(z)d(z)

where k = K
St

and z = ln
(

ST

St

)
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Lemma 4 If f(y) is normal with mean µ and standard deviation σ̂ then

1.
∫ ∞

a
f(y)d(y) = N

(
µ− a

σ̂

)

and

2.
∫ ∞

a
eyf(y)d(y) = N

(
µ− a

σ̂
+ σ̂

)
eµ+ 1

2
σ̂2

with

3.

E(ey) = eµ+ 1
2
σ̂2

We have in this case

µ = E
[
ln
(
ST

St

)]

and
σ̂2 = σ2(T − t)

From risk neutrality E(ST ) = F and hence, using the Lemma 4, 3

E
[
ST

St

]
=
F

St
= eµ+ 1

2
σ2(T−t)

and it follows that

µ = ln
(
F

St

)
− 1

2
σ2(T − t)

Hence, choosing a = ln(k) = ln
(

K
St

)
,

∫ ∞

a
f(z)d(z) = N

(
µ− a

σ̂

)
= N




ln
(

F
St

)
− 1

2
σ2(T − t) − ln

(
K
St

)

σ
√
T − t
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∫ ∞

a
ezf(z)d(z) = N

(
µ− a

σ̂
+ σ̂

)
= N


 ln

(
F
K

)
− 1

2
σ2(T − t) + σ2(T − t)

σ
√
T − t


 F
St

and hence

F [g(ST )]

St

=
F

St

N




ln
(

F
K

)
+ 1

2
σ2(T − t)

σ
√
T − t


−KN




ln
(

F
K

)
− 1

2
σ2(T − t)

σ
√
T − t
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A Proof of the Black Model (Forward Version) Assume the following
the process for the forward price of the asset:
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Proposition 2.1 Suppose the forward prices of a stock and a contingent
claim follow the processes above, then the no-arbitrage forward price of the
contingent claim is

Cf = [p′Cf
u + (1 − p′)Cf

d ]

where

p′ =
1 − d

u− d

If an option pays max(ST −K, 0), after n sub-periods, then its forward price
is given by

Cf = E [max(ST −K, 0)]

where the expectation E(.) is taken over the probabilities p′. Also,

Cf

F
= E

[
max(

ST

F
− k′, 0)

]

= pnun + pn−1(1 − p)un−1dn+ ....+ pn−r(1 − p)run−rdr n!

r!(n− r)!

− k′
[
pn + pn−1(1 − p)n+ .... + pn−r(1 − p)r n!

r!(n− r)!

]

=
∫ ∞

ln(k′)
(ez − k′)f(z)dz

where k′ = K
F

and z = ln
(

ST

F

)
.

To value the option we again take the case of a ‘risk-neutral’ stock, where
E(ST ) = F . Let

µ = E
[
ln
(
ST

F

)]

We then have

E
[
ST

F

]
=
E[ST ]

F
= 1 = eµ+ 1

2
σ2

It follows that

µ = −1

2
σ2(T − t)

Hence, choosing a = ln(k′) = ln
(

K
F

)
,
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∫ ∞

a
f(z)d(z) = N

(
µ− a

σ̂

)
= N


−

1
2
σ2(T − t) + ln

(
F
K

)

σ
√
T − t




∫ ∞

a
ezf(z)d(z) = N

(
µ− a

σ̂
+ σ̂

)
= N


 ln

(
F
K

)
− 1

2
σ2(T − t) + σ2(T − t)

σ
√
T − t




and hence

Cf

F
= N




ln
(

F
K

)
+ 1

2
σ2(T − t)

σ
√
T − t


− K

F
N




ln
(

F
K

)
− 1

2
σ2(T − t)

σ
√
T − t




and

Cf

F
= N(d1) −

K

F
N(d2)

Cf = FN(d1) −KN(d2)

The spot price of the option is

C = Bt,TFN(d1) − Bt,TKN(d2)
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Example 1: A Call Option, Non-Dividend Paying Stock

St = Bt,TF

implies
C = StN(d1) −Bt,TKN(d2)

as in Black-Scholes. Note proof has not assumed constant (non-stochastic
interest rates.

Example 2: A Stock Paying Dividends

Assume that dividends are paid at a continuous rate d. The forward price of
the stock is

F = Ft,T = Ste
(r−d)(T−t)

C = Bt,TSte
(r−d)(T−t)N(d1) −Bt,TKN(d2)

C = Ste
(−d)(T−t)N(d1) −Bt,TKN(d2)

since
Bt,T = s−r(T−t)
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3 Hedge Ratios in the Black-Scholes and Black

Models

We need to know the following sensitivities:

1. The call delta

∆c =
∂Ct

∂St

2. The put delta

∆p =
∂Pt

∂St

3. The put and the call gamma

Γ =
∂

∂St

[
∂Ct

∂St

]
=

∂

∂St

[
∂Pt

∂St

]

4. The vega of a call or put option:

V =
∂Ct

∂σ

5. The theta of a call or put option:

Θc =
∂Ct

∂t
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The Black-Scholes Model: No Dividends

C = StN(d1) −Bt,TKN(d2)

where

d1 =
ln
(

F
K

)
+ σ2(T−t)

2

σ
√
T − t

,

d2 =
ln
(

F
K

)
− σ2(T−t)

2

σ
√
T − t

.

Lemma 5

n(d2)
K

F
= n(d1)

Lemma 6 (Differential Calculus) 1. Chain rule

∂f(g(x))

∂x
= g′(x)f ′[(g(x)]

2. Product rule

∂[f(x)(g(x)]

∂x
= f ′(x)g(x) + g′(x)f(x)]

Proposition 3.1 In the Black-Scholes model, the delta of a call option is
given by

∆c =
∂Ct

∂St
= N(d1)
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Proof

Using lemma 7,

∂Ct

∂St
= N(d1) + StN

′(d1)
∂d1

∂St
−Ke−r(T−t)N ′(d2)

∂d2

∂St

Then, note that d2 = d1 − σ
√

T−t
2

implies ∂d2

∂St
= ∂d1

∂St
. Hence,

∂Ct

∂St

= N(d1) +
∂d1

∂St

[
StN

′(d1) −Ke−r(T−t)N ′(d2)
]

and using lemma 5,

∂Ct

∂St

= N(d1) +
∂d1

∂St

[
StN

′(d2)
K

F
−Ke−r(T−t)N ′(d2)

]

From forward parity
F = Ste

r(T−t)

and hence
∂Ct

∂St
= N(d1)

Corollary 2 (Put Option Delta) From put-call parity

Ct − Pt = St −KBt,T

Hence,
∂Ct

∂St

− ∂Pt

∂St

= 1

∆p =
∂Pt

∂St

= N(d1) − 1

Corollary 3 (Put, Call Gamma)

∂

∂St

[
∂Ct

∂St

]
=

∂

∂St

[
∂Pt

∂St

]

= N ′(d1)
∂d1

∂St

= n(d1)
1

Stσ
√
T − t
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Using a similar method, it is possible to establish

1. The vega of a call option

∂Ct

∂σ
= St

√
T − tN ′(d1)

and using put-call parity,

∂Pt

∂σ
=
∂Ct

∂σ

2. The theta of call option

∂Ct

∂t
=
StN

′(d1)σ

2
√
T − t

− rKe−r(T−t)N(d2)

and using put-call parity

∂Pt

∂t
=
∂Ct

∂t
+ rKe−r(T−t)

Hedge Ratios: Options on Dividend Paying Stocks

For a stock which pays a continuous dividend at a rate d,

Ct = Ste
−d(T−t)N(d1) −Ke−r(T−t)N(d2)

where

d1 =
ln(St/K) + (r − d+ σ2)(T − t)/2

σ
√
T − t

d2 = d1 − σ
√
T − t

since, from forward parity,

F = Ste
(r−d)(T−t)

and hence

d1 =
ln
(

F
K

)
+ σ2(T−t)

2

σ
√
T − t

=
ln
(

St

K

)
+
(
r − d+ σ2

2

)
(T − t)

σ
√
T − t
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It follows that the call delta is

∆c =
∂Ct

∂St

= e−δ(T−t)N(d1)

Also, for foreign exchange options

∆c =
∂Ct

∂St

= e−rf (T−t)N(d1)

where rf is the foreign risk-free rate of interest.

Hedge Ratios: Futures-Style Options

Let H be the futures price of the asset at time t, for time T delivery. The
Black formula gives a (futures) call value:

Ch = HN(d1) −KN(d2)

with

d1 =
ln
(

H
K

)
+ σ2(T−t)

2

σ
√
T − t

d2 = d1 − σ
√
T − t

Note that the Black formula will hold if the underlying futures price follows
a geometric brownian motion. [The proof is the same as the forward proof
above.] Then we have:

Proposition 3.2 (Call Delta: Futures-Style Options)

Assume that the option is traded on a marked-to-market basis, then the fu-
tures price of the call is given by

Ch = HN(d1) −KN(d2)

and the call delta (in terms of futures positions) is

∆c =
∂Ch

∂H
= N(d1)
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Proof

For the price Ch, see Satchell, Stapleton and Subrahmanyam (1997). For the
hedge ratio, a reworking of Lemma 5 yields in this case

(
K

H

)
n(d2) = n(d1)

Using this and the same steps as in the proof of proposition 3.1 we get the
result.

Corollary 4 (Libor Futures Options)

Assuming these are European-style, marked-to-market options, then a put on
the futures price has a value

Pt = [(1 −Ht,T )N(d1) − (1 −K)N(d2)]

where

d1 =
ln
(

1−H
1−K

)
+ σ2(T−t)

2

σ
√
T − t

d2 = d1 − σ
√
T − t

where H is the futures price and K is the strike price. The delta hedge ratio,
in terms of the underlying Libor futures contract is

∂P h

∂(1 −H)
= N(d1)

∂P h

∂(H)
= −N(d1)

Proof

The futures price of the option can be established for Libor options by assum-
ing that the futures rate follows a lognormal diffusion process (limit of the
geometric binomial process as n → ∞). The hedge ratio can be established
by reworking Lemma 5 to obtain

(
1 −K

1 −H

)
n(d2) = n(d1)
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3.1 Hull’s Treatment of ‘Futures Options’

There are three issues to consider here:

1. Options on futures. These are options to enter a futures contract,
at a fixed futures price K. However, since in all cases, the maturity of
the option is the same as the maturity of the underlying futures, these
options have the same payoff as options on spot prices, if exercised at
maturity. The main difference is in the valuation of the American-style,
early exercise feature (CME v PHILX).

2. Futures-style options. On many exchanges (ex. LIFFE) options are
traded on a marked-to-market basis, just like the underlying futures.
Hull does not deal with the valuation of these options.

3. Hedging with futures Any option could be hedged with futures (not
necessarily options on futures.

3.2 A Digression on Futures v Forwards

Hull’s treatment assumes that there is no significant difference between fu-
tures prices and forward prices. [Hull uses the same symbol F for the futures
price and the forward price of an asset.] However, this is not true in the case
interest rate contracts (especially long-term contracts). Also in the case of
options, small differences are magnified.

A long (x = 0) [short (x = 1)] futures contract made at time t, with maturity
T , to buy [sell] an asset at a price Ht,T has a payoff profile:

(−1)x [Ht+1,T −Ht,T ] (−1)x [Ht+2,T −Ht+1,T ] · · · (−1)x [HT,T −HT−1,T ]

On the other hand, a forward contract pays (−1)x [ST − Ft,T ] at time T.

Pricing

Assume no dividends (up to contract maturity)

Ft,T = St/Bt,T = Ste
r(T−t)



Advanced Derivatives 23

Ht,T = Ft,T + cov

Hull assumes Ft,T = Ht,T [For hedging this is OK, since ∆Ft,T ≈ ∆Ht,T ]
Under risk neutrality:

Ht,T = Et(ST )

and, if interest rates are non-stochastic,

Ft,T = Et(ST )

also. However, in general there is a bias due to the covariance term.

Hedging

Forward pays
Ft+1,T − Ft,T

at T , which is worth
(Ft+1,T − Ft,T )Bt+1,T

at t + 1. Futures pays
Ht+1,T −Ht,T

at t+1, hence the hedge ratios for options, in terms of forwards and futures,
are quite different to one another.

Hull does not value ‘futures-style’ options. His formula for the spot price
of a futures option assumes zero covariance between interest rates and the
aset price. What if there is a significant correlation (bond options, LIBOR
futures options)?

If the forward price of the asset follows a GBM, then the Black model holds,
with forward price in the formula. Then the spot price of the option is

C = Bt,TFN(d1) − Bt,TKN(d2)

But from SSS (1997) this requires gt,T to be lognormal, if the pricing kernel
is lognormal.

Conclusion. If Black model holds for futures-style options, it is not likely to
hold for spot-style (because of stochastic discounting). It should be estab-
lished using a forward hedging argument, not a futures hedging argument as
in Hull.
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4 Approximating Diffusion Processes

Definitions

1. A lognormal diffusion process (geometric Brownian motion) for St:

dSt = µStdt+ σStdz

or
dSt

St

= µdt+ σdz

In discrete form:
St+1 − St

St
= mµ+

√
mσεt+1

where m is the length of the time period (in years), and ε ∼ N(0, 1)
Also, we can write

d ln(St) = (µ− 1

2
σ2)dt+ σdz

ln(St+1) − ln(St) = (µ− 1

2
σ2)m+ σ

√
mεt+1

2. A constant elasticity of variance (CEV) process for St:

dSt = µStdt+ σSγ
t dz

(If γ = 1, lognormal diffusion. If γ = 0, St is normal.) In discrete form:

St+1 − St = mµSt +
√
mσSγ

t εt+1

vart(St+1 − St) = mσ2S2γ
t

∂vart(St+1 − St)

∂St
= 2mγσ2S2γ−1

t

The elasticity of variance is

∂vart(St+1 − St)

∂St

St

vart(St+1 − St)
= 2γ

Example: γ = 0.5,
√

process of Cox, Ingersoll and Ross (1985)
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3. A generalized CEV process:

dSt = µ(St, t)Stdt+ σ(t)Sγ
t dz

If γ = 0, σ(t) = σ, and µ(St, t)St = β(α− St)

dSt = β(α− St)dt+ σdz

This is the Ornstein-Uhlenbeck process, as used in Vasicek (1976)
model.

Approximation methods: Lognormal Diffusions

Assume we want to approximate the process

dSt = µStdt+ σStdz

with a multiplicative binomial with constant u and d movements. From
lecture 1, the approximated mean µ̂ and standard deviation σ̂ are given by:

µ̂T = n[q ln(u) + (1 − q) ln(d)] (1)

σ̂2T = n[q(1 − q)(ln(u) − ln(d))2] (2)

We need to choose u, d, q so that

µ̂T → µT, σ̂T → σT, n→ ∞

1. The Cox-Rubinstein Solution

Choose the restriction ud = 1, then if u = eσ
√

T
n , and

q =
1

2


1 +

µ

σ

√
T

n




we have µ̂ = µ. Also, σ̂ → σ, for n → ∞. To prove this note that

ud = 1 implies d = e−σ
√

T
n and ln(d) = − ln(u), and substitution in (1)

and (2) gives the result, since q → 1
2

as n→ ∞.
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2. The Hull-White Solution

Choose q = 0.5, then the solution to equations (1) and (2), with µ and
σ substituted for µ̂ and σ̂ is

ln(u) =

√
σ2T

n
+
µT

n

3. The HSS Solution

Suppose we are given a set of expected prices E0(St) for each t, as well
as the volatility σ. HSS first construct a process for xt = St

E0(St)
, where

E0(xt) = 1. To do this, choose q = 1
2
, u = 2 − d, and

d =
2

e2σ
√

T
n + 1

.

Then we have E0(xt) = 1 and σ̂ = σ.

Recombining Trees: The Nelson-Ramaswamy Method

[Note: NR use the notation σ for the standard deviation in a Brownian
motion, rather than the conventional standard deviation of the logarithm
in a geometric Brownian motion. In this section we will use σ′ for the NR
σ to distinguish it from the volatility (annualised standard deviation of the
logarithm), σ.]

NR consider the general process:

dyt = µ′(y, t) + σ′(y, t)dwt

where, for example,

µ′(y, t) = µ(St, t)St

σ′(y, t) = σ(t)Sγ
t

If the volatility of the process changes over time, the binomial tree approxi-
mation may not combine:

Example 1 GCEV process with γ = 1, µ(St, t) = µ

dSt = µStdt+ σ(t)Stdz
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Lemma 7 The CEV process approximation is recombining if and only if
γ = 0, 1.

1. µ is irrelevant to the recombination issue, so take µ = 0. Recombination
requires

S0 + σSγ
0 − σ(S0 + σSγ

0 )γ = S0 − σSγ
0 + σ(S0 − σSγ

0 )γ

If γ = 0:
S0 + σ − σ = S0 − σ + σ

If γ = 1:

S0 + σS0 − σ(S0 + σS0) = S0 − σS0 + σ(S0 − σS0)

2. Take the case where S0 = 1

S2,u,d = 1 + σ − σ(1 + σ)γ 6= 1 − σ + σ(1 − σ)γ

NR split the period [0, T ] into n sub-periods of length h = T
n
. After k sub-

periods, yhk goes to y+(hk, yhk) with probability q and to y−(hk, yhk), with
probability (1−q). The annualised drift and variance of the process are given
by

hµ′
h(y, t) = q[y+ − y] + (1 − q)[[y− − y]

hσ′2(y, t) = q[y+ − y]2 + (1 − q)[[y− − y]2

(NR eq 11-12).

1. NR first construct a non-recombining tree. In this tree y goes to y+ =
y +

√
hσ′(y, t) with probability q = 1

2
+

√
h µ′(y,t)

2σ′(y,t)
, and to y+ = y −√

hσ′(y, t) with probability (1 − q).

2. NR then define a transformation of the process, such that the binomial
tree recombines. They choose [NR (25)]

x(y, t) =
∫ y dz

σ′(z, t)
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in discrete form,

x(y, t) =
t∑

1

∆yτ

σ′(y, τ)
=

∆y1

σ′(y, 1)
+

∆y2

σ′(y, 2)
+ ....+

∆yt

σ′(y, t)

3. NR then define a reverse transformation:

y[x(y, t)] : x(y, t) −→ x(y, t)σ′(y, t)

Proposition 4.1 (Nelson and Ramaswamy)

Suppose yt is given by the non-recombining tree [NR(21-23)], the transformed
process defined by [NR (25-26)] is a simple tree. If we choose the probability
of an up-move to match the conditional mean by making

q =
hµ′ + y(x, t) − y−(x, t)

y+(x, t) − y−(x, t)

Then µ̂′ → µ′ and σ̂′ → σ′, as n→ ∞.

Proof

By construction the mean is exact, since

q(y+ − y−) = hµ′ + y − y−

implies that
qy+ + (1 − q)y− = y + hµ′,

i.e. µ̂′ = µ′.

The conditional variance is exact if q = 0.5. Also q → 0.5 as n→ ∞
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5 Multivariate Processes: The HSS Method

Motivation

• For many problems we need to approximate multiple-variable diffusion
processes

• It may be reasonable to assume that prices (or rates) follow lognormal
diffusions

• From NR if ln(Xt) = xt is given by

dxt = µ(xt)dt+ σ(t)dz

we can build a ’simple’ tree for xt and choose the probability of an
up-move

qt−1 =
µ(xt−1) + xt−1 − x−t

x+
t − x−t

(3)

HSS assumptions

• Xi is lognormal for all dates ti, with given mean E(Xi).

• For dates ti, we are given the local volatilities σi−1,i, and the uncondi-
tional volatilities σ0,i.

• Approximate with a binomial process with ni sub-periods.

• Add a second (or more) variable Yi, where (Xi, Yi) are joint log-normal,
correlated variables.

Relation to NR: One-Variable Case

Assume an Ornstein-Uhlenbeck process for xt:

dxt = κ(a− xt)dt+ σdz.

In discrete form
xi − xi−1 = k(a− xi−1) + σεt,
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xi = ka+ b′x1−k + ε′i (4)

and
var(xi) = (1 − k)2var(xi−1) + var(ε′i)

In annualised form

t2iσ
2
0,ti

= (1 − k)2tiσ
2
0,ti

+ (ti − ti−1)σ
2
ti−1,ti

.

Hence, if we are given the mean reversion rate k, and the conditional volatil-
ities, σi−1,i, we can compute the unconditional volatilities, σti .

However, the linear regression (4) is valid for any lognormal variables. We
do not need to assume a, k are constant or that σt−1,t = σ.

To obtain the probability in NR, assume a binomial density, ni = 1 for all i,
in HSS [eq(10)]. This gives

qi−1,r =
ai + bixi−1,r − (i− 1 − r) ln(ui) − (r + 1) ln(di)

[ln(ui) − ln(di)]
, (5)

However,

x−t = (i− 1 − r) ln(ui) + (r + 1) ln(di)

x+
t = (i− r) ln(ui) + r ln(di)

x+
t − x−t = ln(ui) − ln(di)

Hence (5) is equivalent to (3) with ai + bixi−1,r = xt−1 + µ(xt−1).

In general, the probability of an up-move is given by HSS [eq(10)]

qi−1,r =
ai + bixi−1,r − (Ni−1 − r) ln(ui) − (ni + r) ln(di)

ni[ln(ui) − ln(di)]
, (6)

where Ni =
∑i

1 nl. An example: Let ni = 2, for all i, then for i = 2 and
r = 0, we have

q1,0 =
a2 + b2x1,0 + (2 − 0) ln(u2) − 2 ln(d2)

2[ln(u2) − ln(d2)]
,
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Proposition 5.1 (HSS) Suppose that ui and di are chosen by

di =
2

1 + e
2σi−1,i

√
ti−ti−1

ni

ui = 2 − di

and the probability of an up move is

qi−1,r =
ai + bixi−1,r − (Ni−1 − r) ln(ui) − (ni + r) ln(di)

ni[ln(ui) − ln(di)]
,

where Ni =
∑i

1 nl. Then µ̂→ µ and σ̂ → σ, as n→ ∞.

Proof

See HSS (1995).

A Multivariate Extension of HSS

In Peterson and Stapleton (2002) the original two variable version of HSS
(eq 13, p1140), is modified, extended (to three variables) and implemented.
It is illustrated by pricing a ’Power Reverse Dual’ a derivative that depends
on the process for two interest rates and an exchange rate.

First, we assume, that

xt = ln[Xt/E(Xt)],

yt = ln[Yt/E(Yt)],

follow mean reverting Ornstein-Uhlenbeck processes, where:

dxt = κ1(φt − xt)dt+ σx(t)dW1,t

dyt = κ2(θt − yt)dt+ σy(t)dW2,t, (7)

where E(dW1,tdW2,t) = ρdt. In (7), φt and θt are constants and κ1 and κ2

are the rates of mean reversion of xt and yt respectively. As in Amin(1995),
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it is useful to re-write these correlated processes in the orthogonalized form:

dxt = κ1(φt − xt)dt+ σx(t)dW1,t

dyt = κ2(θt − yt)dt+ ρσy(t)dW1,t +
√

1 − ρ2σy(t)dW3,t, (8)

where E(dW1,tdW3,t) = 0. Then, rearranging and substituting for dW1,t in
(43), we can write

dyt = κ2(θt − yt)dt− βx,y [κ1(φt − xt)] dt+ βx,ydxt +
√

1 − ρ2σy(t)dW3,t.

In this bivariate system, we treat xt as an independent variable and yt as the
dependent variable. The discrete form of the system can be written as follows:

xt = αx,t + βx,txt−1 + εx,t

yt = αy,t + βy,tyt−1 + γy,txt−1 + δy,txt + εy,t, (9)
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Proposition 5.2 (Approximation of a Two-Variable Diffusion Process)
Suppose that Xt, Yt follows a joint lognormal process, where E0(Xt) = 1, E0(Yt) =
1 ∀t, and where

xt = αx,t + βx,txt−1 + εx,t

yt = αy,t + βy,tyt−1 + γy,txt−1 + δy,txt + εy,t

Let the conditional logarithmic standard deviation of Jt be denoted as σj(t)
for J = (X, Y ), where

σ2
j (t) = var(εj,t) (10)

If Jt is approximated by a log-binomial distribution with binomial density
Nt = Nt−1 +nt and if the proportionate up and down movements, ujt and djt

are given by

djt =
2

1 + exp(2σj(t)
√
τt/nt)

ujt = 2 − djt

and the conditional probability of an up-move at node r of the lattice is given
by

qjt−1,r =
Et−1(jt) − (Nt−1 − r) ln(ujt) − (nt + r) ln(djt)

nt[ln(ujt) − ln(djt)]

then the unconditional mean and volatility of the approximated process ap-
proach their true values, i.e., Ê0(Jt) → 1 and σ̂j,t → σj,t as n→ ∞.
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Steps in HSS: Single Factor Tree (n = 1 case)

Assume we are given b in the regression (mean reversion):

xi = ai + bxi−1 + εi

Also, we are given the local volatilities σi−1,i.

1. Compute

di =
2

1 + e2σi−1,i
√

ti−ti−1

ui = 2 − di

2. Compute the nodal values for the unit mean tree

ui−r
i dr

i

3. Compute the unconditional voltilities using

tiσ
2
0,i = b2ti−1σ

2
0,i−1 + (ti − ti−1)σ

2
i−1,i

starting with i = 1.

4. Compute the constant coefficients:

ai = −1

2
tiσ

2
0,i + b

1

2
ti−1σ

2
0,i−1

5. Compute the probabilities

qi−1,r =
ai + bxi−1,r − (i− 1 − r) ln(ui) − r ln(di) − ln(di)

ln(ui) − ln(di)
,

6. Given the unconditional expectations E0(Xi) compute the nodal values

Xi,r = E0(Xi)u
i−r
i dr

i
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6 Interest-rate Models

6.1 No-arbitrage and Equilibrium Models

Equilibrium Interest-rate Models

An equilibrium interest-rate model assumes a stochastic process for the in-
terest rate and derives a process for bond prices, assuming a value for the
market price of risk.

No-arbitrage Interest-rate Models

A no-arbitrage interest-rate model assumes the current term structure of
bond prices and builds a process for interest rates (and bond prices) that is
consistent with this given term structure. In a no-arbitrage model, no bond
can stochasticaly dominate another.

Proposition 6.1 [No-Arbitrage Condition] A sufficient condition for no
arbitrage is that the forward price of a zero-coupon bond is given by

Et(Bt+1,T ) =
Bt,T

Bt,t+1

where the expectation is taken under the risk-neutral measure.

Examples:

1. The Vasicek (1977) model (Equilibrium Model)

• Assumes short rate (rt) follows a normal distribution process

• Assumes that short rate mean reverts at a constant rate

• Derives equilibrium bond prices for all maturities

drt = κ(a− rt)dt+ σ′dz.

In discrete form:

rt − rt−1 = k(a− rt−1) + σ′εt,
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2. The Ho-Lee model

• Assumes that the zero-coupon bonds follow a log-binomial process.

• This implies that the short rate (rt) follows a normal distribution
process, in the limit.

• Takes bond prices, and hence forward prices, (at t = 0) as given.

• The model builds a process for the forward prices of the set of
zero-coupon bonds.

• No-arbitrage model, prices European-style bond options

3. The Black-Karasinski model

• Assumes short rate (rt) follows a lognormal distribution process

• It derives from a prior model, the Black-Derman-Toy model, which
did not have mean reversion.

d ln(rt) = κ[θ(t) − ln(rt)]dt+ σ(t)dz.

ln(rt) − ln(rt−1) = k[θ(t) − ln(rt)] + εt

• Takes bond prices, or futures rates (at t = 0) as given

• No-arbitrage model, prices European-style, American-style bond
options

• Unconditional volatility (caplet vol) in the BK model:

var[ln(rt)] = (1 − k)2var[ln(rt−1)] + var(εt)

√
tσ0,t = (1 − k)

√
t− 1σ0,t−1 + σt−1,t

A Recombining BK model using HSS

To use the HSS method we follow the steps:

1. Given the local volatilities, σ(t), and the mean reversion, k, we first
build a tree of xt, with E0(xt) = 1, for all xt.
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2. Then multiply by the expectations of rt under the risk-neutral measure.
The following result establishes that these expectations are the futures
LIBOR, h0,t

The following lemma states that, given the definition of the LIBOR futures
contract, the futures LIBOR is the expected value of the spot rate, under
the risk-neutral measure.

Lemma 8 (Futures LIBOR) In a no-arbitrage economy, the time-t futures
LIBOR, for delivery at T , is the expected value, under the risk-neutral mea-
sure, of the time-T spot LIBOR, i.e.

ft,T = Et(rT )

Also, if rT is lognormally distributed under the risk-neutral measure, then:

ln(ft,T ) = Et[ln(rT )] +
vart[ln(rT )]

2
,

where the operator “var” refers to the variance under the risk-neutral mea-
sure.

Proof

The price of the futures LIBOR contract is by definition

Ft,T = 1 − ft,T (11)

and its price at maturity is

FT,T = 1 − fT,T = 1 − rT . (12)

From Cox, Ingersoll and Ross (1981), the futures price Ft,T is the value, at
time t, of an asset that pays

VT =
1 − rT

Bt,t+1Bt+1,t+2...BT−1,T

(13)
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at time T , where the time period from t to t+1 is one day. In a no-arbitrage
economy, there exists a risk-neutral measure, under which the time-t value
of the payoff is

Ft,T = Et(VTBt,t+1Bt+1,t+2...BT−1,T ). (14)

Substituting (13) in (14), and simplifying then yields

Ft,T = Et(1 − rT ) = 1 − Et(rT ). (15)

Combining (15) with (11) yields the first statement in the lemma. The second
statement in the lemma follows from the assumption of the lognormal process
for rT and the moment generating function of the normal distribution. 2

Lemma 8 allows us to substitute the futures rate directly for the expected
value of the LIBOR in the process assumed for the spot rate. In particular,
the futures rate has a zero drift, under the risk-neutral measure.

The Vasicek Model

Proposition 6.2 [Mean and Variance in the Vasicek Model] Assume
that the short-term interest rate is given by

d rt = κ(a− rt) + σ dz

where dz is normally distributed with zero mean and unit variance. Then the
conditional mean of rs is

Et(rs) = a + (rt − a)e−κ(s−t), t ≤ s

and the conditional variance of rs is

vart(rs) =
σ2

2κ
(1 − e−2κ(s−t)), t ≤ s



Advanced Derivatives 39

A Classification of Spot-Rate Models

Assume that the short-term rate of interest follows the GCEV process

drt = µ(rt, t)rtdt+ σ(t)rγ
t dz.

1. If γ = 0, µ(rt, t)rt = κ(a− rt), σ(t) = σ,

drt = κ(a− rt) + σdz

as in Vasicek (true process) and Hull-White (risk-neutral process).

Extensions: Hull-White two-factor model.

2. If γ = 1, µ(rt, t) = µ,

drt = µrtdt+ σ(t)dz

as in Black, Derman and Toy model (risk-neutral process)

dln(rt) = κ[θ(t) − ln(rt)]dt+ σ(t)dz

as in Black-Karasinski model.

Extensions: Peterson, Stapleton, Subrahmanyam two-factor model.

3. If γ = 0.5, µ(rt, t)rt = α(θ − rt),

drt = α(θ − rt) + σ
√
rt

as in CIR model.

Extensions: Credit risk factor, stochastic volatility models.
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The PSS Two-Factor model

Hull and White (JD, 1994) suggest a class of two-factor models, where a
function f(r) follows a process with a stochastic conditional mean. PSS
develop the special case where f(r) = ln(r). This gives a two-factor extension
of the BK model. They define rt as LIBOR at time T : where

Bt,t+m =
1

1 + rtm

Solving the model they show that

ln(rt) − ln(f0,t) = αrt + [ln(rt−1) − ln(f0,t−1)](1 − b) + ln(πt−1) + εt

where
ln(πt) = απt + ln(πt−1)(1 − c) + νt,

under the risk-neutral measure.

To implement the model, PSS form the equations:

xt = αx,t + βx,txt−1 + yt+1 + εx,t

yt = αy,t + βy,tyt−1 + γy,txt−1 + δy,txt + εy,t

where xt = ln
(

rt

f0,t

)
.

Using HSS (NR), PSS choose

qxt−1,r =
Et−1(xt) − (Nt−1 − r) ln(uxt) − (nt + r) ln(dxt)

nt[ln(uxt) − ln(dxt)]

where
Et−1(xt) = αx,t + βx,txt−1 + yt+1

In this model, the no-arbitrage condition [futures = expected spot] is gau-
ranteed by choosing the appropriate q on the tree of rates. The model is then
used to price Bermudan-style swaptions and yield-spread options.
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7 The Ho-Lee Model

Features of the model

• The model prices interest-rate derivatives, given the current term-
structure of bond prices, and given a binomial process for the term-
structure evolution

• One-factor (any bond or interest rate) generates the whole term struc-
ture

• It is analogous to the Cox, Ross, Rubinstein (limit Black-Scholes) model
for bond options

• The model is Arbitrage-Free (AR)

Notation

Bt,T,i = Bt,i(T ) is the discount function in state i at time t, where i is the
number of up-moves of the process. The discount function follows a two-state
(binomial) process. p is the risk-neutral probability of an up move.

Bt,i(.) �
�

�

@
@

@

Bt+1,i+1(.)

Bt+1,i(.)

Let u(T ) and d(T ) be T -dimensional ’perturbation functions’ defined by

Bt+1,i+1(T ) =
Bt,i(T + 1)

Bt,i(1)
u(T )

Bt+1,i(T ) =
Bt,i(T + 1)

Bt,i(1)
d(T )
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Proposition 7.1 [Ho-Lee Process]

1. A constant, time-independent risk-neutral probability p exists and for
any T

p =
1 − d(T )

u(T ) − d(T )

2. The process recombines only if a δ exists such that

u(T ) =
1

p+ (1 − p)δT

Proof

a) Form a portfolio with 1 bond of maturity T and α bonds of maturity τ .
The cost of the portfolio is, at time t, is BT +αBτ (dropping subscripts t, i).
The return on the portfolio in the up state at t+ 1 is

BT

B1
u(T − 1) + α

Bτ

B1
u(τ − 1)

In the down-state it is

BT

B1

d(T − 1) + α
Bτ

B1

d(τ − 1)

Choose α = α∗ so that these are equal, that is

α∗ =
d(T − 1)BT − u(T − 1)BT

u(τ − 1)Bτ − d(τ − 1)Bτ
=
BT [d(T − 1) − u(T − 1)]

Bτ [u(τ − 1) − d(τ − 1)]

With α = α∗, the discounted value of the return must equal the cost, hence

BT + α∗Bτ = BT [d(T − 1)] + [α∗d(τ − 1)]Bτ

and this implies
1 − d(T )

u(T ) − d(T )
= p

which is a constant (for a proof, see exercise 8.1)

b)
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Bt,i(T + 2)�
�

�

@
@

@

Bt+1,i+1(T + 1)

Bt+1,i(T + 1)

Recombination means that

Bt+2,i+1(T ) =
Bt+1,i+1(T + 1)

Bt+1,i+1(1)
d(T ) =

Bt+1,i(T + 1)

Bt+1,i(1)
u(T )

Bt+2,i+1(T ) =

Bt,i(T+2)

Bt,i(1)
u(T + 1)

Bt,i(2)

Bt,i(1)
u(1)

d(T ) =

Bt,i(T+2)

Bt,i(1)
d(T + 1)

Bt,i(2)

Bt,i(1)
d(1)

u(T )

It follows that

u(T + 1)d(T )d(1) = d(T + 1)u(T )u(1),

for all T . Hence,

u(T − 1)

[
1 − pu(T )

1 − p

] [
1 − pu(1)

1 − p

]
=

[
1 − pu(T + 1)

1 − p

]
u(T )u(1)

and simplifying yields
1

u(T + 1)
=

δ

u(T )
+ γ

where

γ =
p [u(1) − 1]

(1 − p)u(1)
.

The solution to this difference equation, with u(0) = 1 is

u(T ) =
1

p+ (1 − p)δT
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and using part a),

d(T ) =
δT

p+ (1 − p)δT
.

Proposition 7.2 [Contingent Claims in the Ho-Lee Model] Consider
a contingent claim paying C(t, i) at time t, in state i, then its value at time
t− 1 is

C(t− 1, i) = {p[C(t, i+ 1)] + (1 − p)[C(t, i)]}Bt−1,i

Proof

Form a portfolio of one discount bond with maturity t plus α contingent
claims. Choose α so that the portfolio is risk free. The result then follows as
in CRR (1979).

Note, if we know the process for Bt(1) and p, we can price any contingent
claim. This is a one-factor model result.
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Steps for Constructing the Ho-Lee Model

1. Use market data to estimate the set of zero-coupon bond prices at
t = 0.

2. Use forward parity to compute the one-period-ahead forward prices at
t = 0, for each bond, B0,1,n, where

B0,1,n =
B0,n

B0,1

3. Compute the up and down movements u(T ) and d(T ) for times to
maturity T = 1, 2, ..., n, where

d(T ) =
δT

0.5(1 + δT )

u(T ) = 2 − d(T )

4. Compute Bu
1,n in the up-state using

Bu
1,n = B0,1,nu(n− 1)

Then compute Bd
1,n in the down-state using

Bd
1,n = B0,1,nd(n− 1)

5. Compute the set of forward prices at t = 1 in the up-state, Bu
1,2,n, using

forward parity. Then compute the set of forward prices at t = 1 in the
down-state, Bd

1,2,n.

6. Starting in the up-state at t = 1 compute Buu
2,n (in the up-up state at

t = 2) using the method in step 4, then compute Bud
2,n and Bdd

2,n.

7. After step 6 you should have a term structure of zero-coupon bond
prices at each date and in each state. Use these to compute interest
rates (yields for example) or coupon bond prices, as required:
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(a) Use

Bs
t,n =

1

(1 + ys
t,n)n−t

to compute the n− t year maturity yield rate in state s at time t.

(b) Use
Bc,s

t,n = cBs
t,1 + cBs

t,2 + ...cBs
t,n +Bs

t,n

to compute the price of an n−m maturity bond, with coupon c,
in state s.

8. Compute the price of an interest-rate derivative by starting at the ma-
turity date of the derivative, working out the expected value using the
probability p = 0.5, and discounting by the one-period zero-coupon
bond price, using

Cs
t =

[
Cs+1

t+1 0.5 + Cs
t+10.5

]
Bs

t,1

where s indicates the state at time t by the number of up-moves of the
process from 0 to t.
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8 The LIBOR Market Model

8.1 Origins of the LMM

• Forward Rate Models (HJM) and Forward Price Models (Ho-Lee)

• Black Model for Caplet Pricing

Brace, Gatarek and Musiela (BGM) and Miltersen, Sandmann and Sonder-
man (MSS) build a forward LIBOR model consistent with the Black Model
holding for each Caplet. Note that the BK model is not consistent with the
Black model (in spite of its lognormal assumption).

Heath-Jarrow-Morton, Forward-Rate Models

HJM models build the process for the forward interest rate. Similar to Ho-
Lee, but forward rate, not forward price. For example, the Brace-Gatarak-
Musiela (BGM) model builds a process for the forward LIBOR. Usually as-
sume a convenient volatility process (ex. constant vol). The models are used
for pricing complex interest-rate derivatives.

Proposition 8.1 [The Black Model: Interest-Rate Caplet]

caplett =
A

1 + ft,t+T δ
δ[ft,t+TN(d1) − kN(d2)]Bt,t+T

where

d1 =
ln(

ft,t+T

k
) + σ2T/2

σ
√
T

d2 = d1 − σ
√
T
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Main Features of the LMM

The main features of the LMM are as follows:

• Forward rates are conditional lognormal over each discrete period of
time.

• The first input is the term structure of forward rates at time t = 0.

• This complete term structure of forward rates is perturbed over each
time period, t

• The methodology is similar to Ho-Lee, but uses forward rates rather
than forward bond prices

• The interest rate generated is usually 3-month LIBOR.

8.2 No-Arbitrage Pricing

We start by considering some implications of no-arbitrage. First, we assume
the following no-arbitrage relationships hold, where expectations are taken
under the risk-neutral measure. We also assume that the zero-coupon bond
prices Bt,t+1 are stochastic. For convenience, write E0 as E.

Lemma 9 (No-Arbitrage Pricing) If no dividend is payable on an asset:

1. the spot price of the asset is

S0 = B0,1E[B1,2E1[B2,3E2[...Bt−1,tEt−1(St)]]]

2. and the t-period forward price of the asset

F0,t = S0/B0,t
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Proposition 8.2 (Zero-Coupon Bond Forward Prices) When expecta-
tions are taken under the risk-neutral measure: The t-period forward price of
a t+ T -period maturity zero-coupon bond is

E(B1,t,t+T ) − B0,t,t+T = −B0,1

B0,t

cov(B1,t,t+T , B1,t)

Proof

From no-arbitrage:

B0,t = B0,1E(B1,t),

B0,t+T = B0,1E(B1,t+T ).

From forward parity:
B1,t+T = B1,t,t+TB1,t,

hence taking expectations and using the definition of covariance,

E(B1,t+T ) = E(B1,t,t+T )E(B1,t) + cov(B1,t,t+T , B1,t)

Substituting for the expected bond prices

B0,t+T

B0,1

= E(B1,t,t+T )
B0,t

B0,1

+ cov(B1,t,t+T , B1,t)

and multiplying by B0,1 and deviding by B0,t yields

B0,t+T

B0,t
= E(B1,t,t+T ) +

B0,1

B0,t
cov(B1,t,t+T , B1,t)

and since, from forward parity

B0,t+T

B0,t
= B0,t,t+T

then we have

E(B1,t,t+T ) − B0,t,t+T = −B0,1

B0,t
cov(B1,t,t+T , B1,t)
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Corollary 5 One-Period Ahead Forward Prices

Let t = 1, then
E(B0,T+1) −B0,1,T+1

and hence
B0,1,T+1 = E(B1,2B1,2,T+1)

Also, with T = 1,

B0,1,2 = E(B1,2)

8.3 The LIBOR Market Model: Notation

• Bt,t+δ = Value at t of a zero-coupon bond paying 1 unit of currency at
t+ δ.

• δ = Interest-rate reset interval (ex. 3 months) as a proportion of a year

• Bt,t+T = Value at t of a zero-coupon bond paying 1 unit of currency at
t+ T .

• Bt,t+T,t+T+δ = Forward price at t for delivery of a zero-coupon bond
(with maturity δ) at T .

• ft,t+T = T -period forward LIBOR at time t if T = 0, ft,t is the spot
LIBOR at t.

• Note that in this notation

Bt,t+T,t+T+δ =
1

1 + ft,t+T δ
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Definition 8.1 A Forward Rate Agreement (FRA) on δ-periodLIBOR, with
maturity t, has a payoff

(ft,t − k)δ

1 + ft,tδ

at date t.

Proposition 8.3 (Drift of the One-Period Forward rate)

Since a one-period FRA struck at the forward rate f0,1 has a zero value:

E

[
(f1,1 − f0,1)δ

1 + δf1,1

]
= 0.

It follows that

E

(
δf1,1

1 + δf1,1

)
=

δf0,1

1 + δf0,1
.

Also

E(δf1,1) − δf0,1 = −cov
(
δf1,1,

1

1 + δf1,1

)
(1 + δf0,1) ≥ 0

Hence, the drift of the forward rate is given by

E(f1,1) − f0,1 = −
(

1

δ

)
cov

(
δf1,1,

1

1 + δf1,1

)
(1 + δf0,1) ≥ 0

Proof

Expanding the lhs of the second equation, using the definition of covariance
and employing Corollary 5 yields the Proposition.
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Proposition 8.4 (Drift of Two-Period Forward) Since a two-period FRA
has a zero value:

E

[(
δ(f1,2 − f0,2)

1 + δf2,2

)
1

1 + δf1,1

]
= 0.

It follows that

E(f1,2) − f0,2 = −
(

1

δ

)
cov

[
δf1,2,

1

1 + δf1,1

· 1

1 + δf1,2

]
(1 + δf0,1) (1 + δf0,2)

Proof

Expanding the lhs, using the definition of covariance and employing Corollary
5 yields the Proposition.

Lemma 10 (Covariances and Covariances of Logarithms) From Tay-
lor’s Theorem we can write

lnX = ln a+
1

a
(X − a) + ...

lnY = ln b +
1

b
(Y − b) + ...

Hence

cov(lnX, lnY ) ≈ 1

a

1

b
cov(X, Y )

Applying this we have for example:

cov(ln(f1,t), ln(f1,τ )) ≈
1

f0,t

1

f0,τ
cov(f1,t, f1,τ )

Lemma 11 (Stein’s Lemma) For joint normal variables, x, y:

cov(x, g(y)) = E(g′(y))cov(x, y)

Hence, if x = lnX and y = lnY Then

cov
(
lnX, ln

(
1

1 + Y

))
= E

[ −Y
1 + Y

]
cov (lnX, lnY )
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Proposition 8.5 (Drift of the One-Period Forward rate)

From Proposition 8.3 we have

E(f1,1) − f0,1 = −
(

1

δ

)
cov

(
δf1,1,

1

1 + δf1,1

)
(1 + δf0,1)

Using Lemma 10 and Lemma 11 we have

E(f1,1) − f0,1 = cov [ln(f1,1), ln(f1,1)]
f0,1δf0,1

1 + f0,1δ

and the annualised drift of the one-period forward rate is

E(f1,1) − f0,1 = δσ0,0f0,1
δf0,1

1 + δf0,1

Proof

For notational simplicity, we write ft,t+T δ as ft,t+T . First, consider the drift
of the one-period forward. From Proposition 8.3 we have

E0(f1,1) − f0,1 = −cov
(
f1,1,

1

1 + f1,1

)
(1 + f0,1)

Using lemma 10

cov

(
f1,1,

1

1 + f1,1

)
= cov

[
ln(f1,1) ln

(
1

1 + f1,1

)]
f0,1/(1 + f0,1),

Hence,

E0(f1,1) − f0,1 = −cov
[
ln(f1,1) ln

(
1

1 + f1,1

)]
/f0,1).

Now using Lemma 11

cov

(
ln(f1,1), ln

(
1

1 + f1,1

))
= cov [ln(f1,1), ln(f1,1)]

[
−f0,1

1 + f0,1

]
,

and hence

E(f1,1) − f0,1 = cov [ln(f1,1), ln(f1,1)]
f0,1f0,1

1 + f0,1
.
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Finally, remembering that ft,t+T δ was written as ft,t+T ,

E(δf1,1) − δf0,1 = cov [ln(δf1,1), ln(δf1,1)]
δf0,1δf0,1

1 + δf0,1

.

and

E(f1,1) − f0,1 = cov [ln(f1,1), ln(f1,1)]
f0,1δf0,1

1 + f0,1δ
.

Now if we define the volatility of the forward rate on an annualised basis, by

δσ2
T = vart[ln(ft,t+T )]

the annualised drift of the forward rate is, where δ is the length of the time
step,

E(f1,1) − f0,1

f0,1

= δσ0,0
δf0,1

1 + δf0,1
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Proposition 8.6 (Drift of the Two-Period Forward rate)

Consider the drift of the two-period forward rate, from Proposition 8.4

E(f1,2) − f0,2 = −
(

1

δ

)
cov

[
δf1,2,

1

1 + δf1,1
· 1

1 + δf1,2

]
(1 + δf0,1) (1 + δf0,2)

Using Lemma 10 and Lemma 11 we have

E(f1,2) − f0,2

f0,2
= δ

[
σ0,1

δf0,1

1 + δf0,1
+ σ1,1

δf0,1

1 + δf0,1

]

Proposition 8.7 The BGM Model

E(f1,T ) − f0,T

f0,T
= δ

[
δf0,1

1 + δf0,1
σ0,T−1 +

δf0,2

1 + δf0,2
σ1,T−1 + · · ·+ δf0,T

1 + δf0,T
σT−1,T−1

]

and given time homogeneous covariances:

E(ft+1,t+T ) − ft,t+T

ft,t+T

= δ

[
δft,t+1

1 + δft,t+1

σ0,T−1 +
δft,t+2

1 + δft,t+2

σ1,T−1 + · · ·+ δft,t+T

1 + δft,t+T

σT−1,T−1

]
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9 Implementing and Calibrating the LMM

9.1 The Yield Curve

As in the Ho-Lee Model (and all HJM models), the model inputs the initial
term structure of zero-coupon bond prices, or forward LIBOR. We assume
that the forward LIBOR curve is available with maturities equal to each
re-set date Note that this is in contrast with the BK model, which requires
iteration to match the yield curve (or inputs the futures rates).

Given the notation ft,t+T the initial forward curve input is

f0,T , T = 0, 1, 2, ....N − 1

where the reset intervals are indexed 1, 2, ..., N − 1

9.2 Caplet Volatilities and Forward Volatilities

Definitions

We have to be careful since there are several different definitions of volatility.
These come from:

1. Variance of bond prices

vart−1(lnBt,t+T )

This is bond price volatility (used by BGM and Hull, ch 24).

2. conditional variance of LIBOR

vart−1(ln rt)

This is local volatility (as in the BK model)

3. Unconditional variance of LIBOR

var0(ln rt)

This is the unconditional volatility of LIBOR often referred to as the
’caplet volatility’ since it can be estimated from cap prices.
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4. Variance of forward LIBOR

vart−1(ln ft,t+T )

This is the (local) volatility of the forward LIBOR rate

Notation

• Caplet Volatilities
capvolt,T

is the caplet volatility (annualised) observed at t for caplets with ma-
turity t + T .

• Forward LIBOR volatilities
fvolt,T

is the volatility (annualised) of the T th forward rate, at time t

However, we can drop the subscript t, if we assume that forward vols
depend only on the maturity of the forward, as in Ho-Lee. Then we
denote the volatility as σT .

• In the multi-factor LMM, we will use

σT (i)

for the volatility at time t of the T th forward arising from the i th
factor.

The Relationship Between Caplet Vols and Forward Vols

The forward rates follow an approximate random walk. Hence,

T capvol2T = fvol20,T−1 + fvol21,T−2 + .... + fvol2T−1,0

(T − 1)capvol2T−1 = fvol20,T−2 + fvol21,T−3 + .... + fvol2T−2,0

... = ...

1capvol21 = fvol20,0



Advanced Derivatives 58

Computing Forward Volatilities

The equations above can be solved for the forward vols only if additional
restrictions are imposed. A reasonable assumption, may be to assume time
homogenous forward volatilities, as in the Ho-Lee model. If we assume that
the volatilities are only dependent on the forward maturity T , and not on
where we are in the tree, we have

fvol1,T = fvol2,T = .... = fvolt,T = σT

We can then solve the system of equations for the forward volatilities using
the ’bootstrap’ equations:

capvol21 = σ2
0

2capvol22 = σ2
0 + σ2

1

3capvol23 = σ2
0 + σ2

1 + σ2
2

... = ...

T capvol2T = σ2
0 + σ2

1 + σ2
2 + ...+ σ2

T−1

9.3 The Factor Model and Forward Covariances

Assume that each forward rate is generated by a factor model with I inde-
pendent factors:

ft,t+T = ft−1,t+T + dt−1,t+T +
I∑

i=1

λt(i)σT (i)ft−1,t+T

where d is the drift per period. with the restriction:

I∑

i=1

σT (i)2 = σ2
T

For example, if I = 1,

ft,t+T = ft−1,t+T + dt−1,t+T + λt(1)σTft−1,t+T
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If I = 2,

ft,t+T = ft−1,t+T + dt−1,t+T + λt(1)σT (1)ft−1,t+T + λt(2)σT (2)ft−1,t+T

with the restriction:
σT (1)2 + σT (2)2 = σ2

T

In this case

ft,t+T − ft−1,t+T

ft−1,t+T

= dt−1,t+T /ft−1,t+T + λ1σT (1) + λ2σT (2)

ft,t+τ − ft−1,t+τ

ft−1,t+τ

= dt−1,t+τ/ft−1,t+τ + λ1στ (1) + λ2στ (2)

It follows that

cov[ln(ft,t+T ), ln(ft,t+τ )] = δσT (1)στ (1) + δσT (2)στ (2).

This equation allows us to compute the covariance matrix of the forward
rates.
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9.4 Steps for Building A One-Factor, Three-period LMM

Inputs

1. Input time-0 structure of forward LIBOR rates

f0,0, f0,1, f0,2, f0,3

2. Input time-0 structure of caplet volatilities

capvol1, capvol2, capvol3

Computing Forward Volatilities

The forward volatilities solve the following ’bootstrap’ equations:

capvol21 = σ2
0

2capvol22 = σ2
0 + σ2

1

3capvol23 = σ2
0 + σ2

1 + σ2
2

Computing Covariances

Compute array of στ,T , for τ = 1, 2, 3 and T = 1, 2, 3, using

στ,T = στσT (16)

Building the Factor Binomial Trees

The binomial tree for the factor has an unconditional mean of 0 and a con-
ditional variance of δ. Hence

λt+1 = ±
√
δ

We have, assuming probabilities, p = 0.5,

Et(λt+1) = 0
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vart(λt+1) = δ.

The Evolution of the Forward rates

Let dt,t+T denote the drift of the T th forward rate, ft,t+T , from time t to
time t+ 1. At t = 0 we have:

d0,0 = δf0,1
δf0,1

1 + δf0,1
σ0,0

d0,1 = δf0,2

[
δf0,1

1 + δf0,1
σ0,1 +

δf0,2

1 + δf0,2
σ1,1

]

d0,2 = δf0,3

[
δf0,1

1 + δf0,1
σ0,2 +

δf0,2

1 + δf0,2
σ1,2 +

δf0,3

1 + δf0,3
σ2,2

]

and

f1,1 = f0,1 + d0,0 + λ1σ0f0,1

f1,2 = f0,2 + d0,1 + λ1σ1f0,2

f1,3 = f0,3 + d0,2 + λ1σ2f0,3

The drift from time 1 to time 2 is

d1,1 = δf1,2
δf1,2

1 + δf1,2
σ0,0

d1,3 = δf1,3

[
δf1,2

1 + δf1,2
σ0,1 +

δf1,3

1 + δf1,3
σ1,1

]

f2,2 = f1,2 + d1,1 + λ2σ0f1,2

f2,3 = f1,3 + d1,2 + λ2σ1f1,3

The drift from time 2 to time 3 is

d2,2 = δf2,3
δf2,3

1 + δf2,3
σ0,0
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f3,3 = f2,3 + d2,2 + λ3σ0f2,3 (17)

Bond Prices

First compute the spot one-period bond prices Bt,t+1,i. These are given by

B0,1 =
1

1 + δf0,0

B1,2 =
1

1 + δf1,1

,

B2,3 =
1

1 + δf2,2

,

B3,4 =
1

1 + δf3,3

,

Caplet Prices

The European-style Caplet is priced using the equations:

C3 = max(f3,3 − k, 0)AδB3,4

C2 = E2(C3)B2,3

C1 = E1(C2)B1,2

C0 = E0(C1)B0,1

A Bermudan-style Caplet is priced using:

BM3 = max(f3,3 − k, 0)AδB3,4

BM2 = max[(f2,2 − k)Aδ,E2(BM3)B2,3]

BM1 = max[(f1,1 − k)Aδ,E1(BM2)B2,3]

BM0 = E0(BM1)B0,1
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Extending of the LMM to Two Factors

Hull shows how the model can be extended to two or more factors. Essen-
tially, we allow the covariance matrix to be generated by two factors:

Computing Factor Loadings

1. Input constants a1,0, .... [for convenience, assume a1,T = (a1,0)
T+1, then

only input a1,0.]

2. Compute the relative factor loadings for factor 2 using:

a2,T = (1 − (a1,T )2)0.5 (18)

3. Compute the absolute factor loadings for factor 1 and 2 using:

σT (1) = a1,TσT (19)

σT (2) = a2,TσT (20)

Computing Covariances

Compute array of στ,T , for τ = 0, 1, ..., 20 and T = 0, 1, ..., 20, using

στ,T = στ (1)σT (1) + στ (2)σT (2) (21)

Building the Factor Binomial Trees

The binomial trees for factor 1, 2: λ1,t and λ2,t have an unconditional mean
of 0 and a conditional variance of 1. Hence

λ1,t+1 = ±
√
δ

λ2,t+1 = ±
√
δ.

We have, assuming probabilities p = 0.5,

E(λ1,t+1) = 0

vart(λ1,t+1) = δ.

f1,T = f0,T + d0,T + λ1,1σT (1)f0,T + λ2,1σT (2)f0,T (22)
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9.5 The HSS Version of the LMM: A Re-combining
Node Methodology

The models suggested in this section use the methodology suggested in Nelson
and Ramaswamy, RFS, 1990, Ho, Stapleton and Subrahmanyam, RFS, 1995.
The basic intuition: we first build a recombining binomial tree with the
correct volatility characteristics. Then we adjust the probabilities of moving
up the tree to reflect the correct drift of the process.

From Ito’s lemma, the drift of ln x is :

d ln x =
dx

x
− 1

2
σ2

Hence, if dx is the drift in the process, we can compute the drift in the
logarithm of the process.

For example, from t = 0 to t = 1, the drift in the zero th forward is

d0,0 = δf0,1
δf0,1

1 + δf0,1

σ0,0

and the drift of the logarithm is

m0,0 = d ln(d0,0) = δ

[
f0,1

1 + f0,1
σ0,0 −

1

2
σ2

0,0

]
.

The probability, q0,0, of an up-move (for the case of n = 1) has to satisfy:

q0,0 ln(f1,1,u) + (1 − q0,0) ln(f1,1,d) = ln(f0,1) +m0,1

Hence, if u0 and d0 are the proportionate up and down moves for a 0-period
maturity forward rate, over the first period, we have

q0,0 =
− ln(d0) +m0,0

ln(u0) − ln(d0)

Now consider the drift from t = 1 to t = 2 of the forward f1,2, assuming that
we are at f1,2,0.
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The probability p1,0 has to satisfy:

q1,0 ln(f2,2,0) + (1 − q1,0) ln(f2,2,1) = ln(f1,2,0) +m1,1,0

Hence,

q1,0 =
ln(u1) +m1,1,0 − ln(u0) − ln(d0)

ln(u0) − ln(d0)
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9.6 Notes for Constructing the LMM-2-Factor Model
Spreadsheet: HSS Method.

Forward Volatilities and Covariances

Inputs

1. Input time 0 structure of forward LIBOR rates

f0,T , T = 0, 1, ..., N

2. Input time 0 structure of caplet volatilities

capvolt, t = 1, 2, .., N

Compute Forward Volatilities

The forward volatilities solve the following ’bootstrap’ equations:

capvol21 = σ2
0 (23)

2capvol22 = σ2
0 + σ2

1 (24)

3capvol23 = σ2
0 + σ2

1 + σ2
2 (25)

... = ...

Ncapvol2N = σ2
0 + σ2

1 + ... + σ2
N−1 (26)

Computing Factor Loadings

1. Input constants a0(1), ...., aN−1(1) [for convenience, assume aT (1) =
(a0(1))T+1, then only input a0(1).]

2. Compute the relative factor loadings for factor 2 using:

aT (2) = (1 − aT (1)2)0.5 T = 0, 1, ..., N − 1 (27)

3. Compute the absolute factor loadings for factor 1 and 2 using:

σT (1) = aT (1)σT , T = 0, 1, ..., N − 1 (28)

σT (2) = aT (2)σT , T = 0, 1, ..., N − 1 (29)
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Compute Covariances

Compute array of στ,T (i), for factors i = 1, 2 and for τ = 0, 1, ..., N − 1 and
T = 0, 1, ..., N − 1, using

στ,T (i) = στ (i)σT (i) (30)

The Evolution of the Forward rates

In the HSS method, the T -period forward rate at time t, in state r, s, [after
r down-moves in factor 1 and s down-moves in factor 2] is given by

ft,t+T,r,s = ft−1,t+T [uT (1)]t−r[dT (1)]r[uT (2)]t−s[dT (2)]s (31)

where

dT (i) =
2

1 + e2σT (i)
√

δ

uT (i) = 2 − dT (i),

for
t = 1, 2, ..., N

T = 0, 1, ..., N − t.

Here we have assumed that volatilities are time independent (i.e. they are
dependent only on maturity T )

Forward Rate Drifts and HSS Probabilities

Let mt,t+T (i) denote the drift per period of the T -period forward rate at time
t due to factor i. In general, the drift of the forward rate at time t is

mt,t+T,r,s(i) = δ

[
δft,t+1,r,s

1 + δft,t+1,r,s
σ0,T (i) +

δft,t+2,r,s

1 + δft,t+2,r,s
σ1,T (i) + ... +

δft,t+T,r,s

1 + δft,t+T,r,s
σT,T (i) − [σT,T (i)]2

2

]

and the probability of an up move is

qt,t+T,r,s(i) = [mt,t+T,r,s(i) + (t− r) lnuT+1(i) + r ln dT+1(i) − (t− r) lnuT (i) − r ln dT (i)

− ln dT (i)]/[ln uT (i) − ln dT (i)].
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Bond Prices

First, compute the forward prices:

Bt,t+T,t+T+1,r,s =
1

1 + δft,t+T,r,s

, T = 0, 1, 2, ...,

Then the long bond prices are given by:

Bt,t+T+1,r,s = Bt,t+T,r,sBt,t+T,t+T+1,r,s

Caplet Prices

The European-style Caplet is priced using the equations:

caplet(t + T, t, r, s) = max(f3,3 − k, 0)Aδ

where A Bermudan-style Caplet is priced using:

BM3 = max(f3,3 − k, 0)Aδ

BM2 = max[(f2,2 − k)Aδ,E2(BM3)B2,3]

BM1 = max[(f1,1 − k)Aδ,E1(BM2)B2,3]

BM0 = E0(BM1)B0,1
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10 Pricing Defaultable Bonds

General Approaches:

• Fundamental, structural models. These value bonds as options on an
underlying value process. Example: Merton model

• Reduced form models. Assume an exogenous probability of default
(hazard rate), plus a recovery rate. Examples: Duffie and Singleton,
Jarrow and Turnbull

Recovery rate assumptions

1. Recovery of principal (face value) [RP]

2. Recovery of treasury (present value) [RT]

3. Recovery of market value [RMV]

Notation

• Let qt be the risk-neutral probability of default over period t to t+ 1.

• Let Bt,T be the value of a defaultable zero-coupon bond, with final
maturity T .

• Let ψt+1 be the dollar amount paid on the bond, in the event of a
default.

• Let bt,T be the value of a risk-free zero-coupon bond.

Then taking the expectation under the risk-neutral measure over the joint
distribution we can write:

Bt,T = [qtEt(ψt+1) + (1 − qt)Et(Bt+1,T )]bt,t+1 (32)

where Bt+1,T is the value of the bond in the event of no default at time t+1.
If the par value of the bond is 1 we then have
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1. RP has Et(ψt+1) = δt

2. RT has Et(ψt+1) = δtbt+1,T

3. RMV has
Et(ψt+1) = δtEt(Bt+1,T ) (33)

Substituting (33) in (32), we have

Bt,T = [qtδt + (1 − qt)]Et(Bt+1,T )bt,t+1 (34)

In a LIBOR model, we let

bt,t+1 =
1

1 + rth
,

Bt,T = [qtδt + (1 − qt)]Et(Bt+1,T )
1

1 + rth

In a similar manner to DS, we define a ’risk adjusted’ rate Rt such that

Bt,T =
1

1 +Rth
Et(Bt+1,T ) = [qtδt + (1 − qt)]Et(Bt+1,T )

1

1 + rth

which implies that
Rt ≈ rt + qt(1 − δt)/h

10.1 A Credit Spread LIBOR Model

In Peterson and Stapleton (Pricing of Options on Credit-Sensitive Bonds) the
London Interbank Offer Rate (LIBOR) is modelled as a lognormal diffusion
process under the risk-neutral measure. Then, as in PSS, the second factor
generating the term structure is the premium of the futures LIBOR over the
spot LIBOR.
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The second factor generating the premium is contemporaneously independent
of the LIBOR. However, in order to guarantee that the no-arbitrage condition
is satisfied, future outcomes of spot LIBOR are related to the current futures
LIBOR. This creates a lag-dependency between spot LIBOR and the second
factor. In addition ,the one-period credit-adjusted discount rate, appropriate
for discounting credit-sensitive bonds, is given by the product of the one-
period LIBOR and a correlated credit factor. We assume that this credit
factor, being an adjustment to the short-term LIBOR, is independent of the
futures premium.

This leads to the following set of equations:

We let (xt, yt, zt) be a joint stochastic process for three variables representing
the logarithm of the spot LIBOR, the logarithm of the futures-premium
factor, and the logarithm of the credit premium factor.

We then have:

dxt = µ(x, y, t)dt+ σx(t)dW1,t (35)

dyt = µ(y, t)dt+ σy(t)dW2,t (36)

dzt = µ(z, t)dt+ σz(t)dW3,t (37)

where E (dW1,tdW3,t) = ρ, E (dW1,tdW2,t) = 0, E (dW2,tdW3,t) = 0.

Here, the drift of the xt variable, in equation (35), depends on the level of
xt and also on the level of yt, the futures premium variable. Clearly, if the
current futures is above the spot, then the spot is expected to increase. The
mean drift of xt thus allows us to reflect both mean reversion of the spot and
the dependence of the future spot on the futures rate.

The drift of the yt variable, in equation (36), also depends on the level of yt,
reflecting possible mean reversion in the futures premium factor. Note that
equations (35) and (36) are identical to those in the two-factor risk-free bond
model of Peterson, Stapleton and Subrahmanyam (2001).

The additional equation, equation (37), allows us to model a mean-reverting
credit-risk factor. Also the correlation between the innovations dW1,t and
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dW3,t enables us to reflect the possible correlation of the credit-risk premium
and the short rate.

First, we assume, as in HSS, that xt, yt and zt follow mean-reverting Ornstein-
Uhlenbeck processes:

dxt = κ1(a1 − xt)dt+ yt−1 + σx(t)dW1,t (38)

dyt = κ2(a2 − yt)dt+ σy(t)dW2,t, (39)

dzt = κ3(a3 − zt)dt+ σz(t)dW3,t, (40)

where E (dW1,tdW3,t) = ρdt, E (dW1,tdW2,t) = 0, E (dW2,tdW3,t) = 0. and
where the variables mean revert at rates κj to aj, for j = x, y, z.

As in Amin(1995), it is useful to re-write these correlated processes in the
orthogonalized form:

dxt = κ1(a1 − xt)dt+ yt−1 + σx(t)dW1,t (41)

dyt = κ2(a2 − yt)dt+ σy(t)dW2,t (42)

dzt = κ3(a3 − zt)dt+ ρσz(t)dW1,t +
√

1 − ρ2σz(t)dW4,t, (43)

where E(dW1,tdW4,t) = 0. Then, rearranging and substituting for dW1,t in
(43), we can write

dzt = κ3(a3 − zt)dt− βx,z [κ1(a1 − xt)] dt+ βx,zdxt +
√

1 − ρ2σz(t)dW4,t.

In this trivariate system, yt is an independent variable and xt and zt are
dependent variables. The discrete form of the system can be written as
follows:


